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Abstract

Restricted Boltzmann Machine (RBM) has been applied
to a wide variety of tasks due to its advantage in fea-
ture extraction. Implementing sparsity constraint in the
activated hidden units is an important improvement on
RBM. The sparsity constraints in the existing methods
are usually specified by users and are independent of the
input data. However, the input data could be heteroge-
neous in content and thus naturally demand elastic and
adaptive settings of the sparsity constraints.
To solve this problem, we proposed a generalized model
with adaptive sparsity constraint, named Gaussian Car-
dinality Restricted Boltzmann Machines (GC-RBM). In
this model, the thresholds of hidden unit activations are
decided by the input data and a given Gaussian distribu-
tion in the pre-training phase. We provide a principled
method to train the GC-RBM with Gaussian prior. Ex-
perimental results on two real world data sets justify the
effectiveness of the proposed method and its superiority
over CaRBM in terms of classification accuracy.

Introduction

Restricted Boltzmann Machine (RBM) has been widely
studied since 2006 (Hinton and Salakhutdinov 2006; Hin-
ton, Osindero, and Teh 2006; Hinton 2010). It has been
applied to a variety of tasks such as image classification
and voice recognition. As a building block of deep struc-
ture (Bengio et al. 2007; Salakhutdinov and Hinton 2009;
Cho, Raiko, and Ilin 2011), it provides good initialization on
both supervised and unsupervised learning (Lee et al. 2009;
Snoek, Adams, and Larochelle 2012). One important re-
search direction is to improve its performance, along which
enforcing sparsity constraints has been an effective way.

There are several approaches to introduce sparsity to
RBM. Implementing sparsity constraints as penalty func-
tions (Lee, Ekanadham, and Ng 2007; Luo et al. 2011) is
one of those approaches. The work by Goh et al. (Goh et
al. 2010; 2011) is also based on the same idea and aims to
obtain a more precise control of the regularization. Another
important way is to integrate strict sparsity constraints di-
rectly into energy function, which is not recommended be-
fore the Cardinality-RBM (CaRBM) (Swersky et al. 2012)
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since it often results in non-trivial dependencies between
hidden units that make inference intractable.

Swersky et al. presented CaRBM in (Swersky et al.
2012). The main idea of CaRBM is that no more than a given
number of hidden units are activated simultaneously. To do
so, a universal threshold of the number of activated hidden
units is added to the joint probability distribution. There-
fore, all hidden units compete with each other for the limited
chances of being activated, which lead to the consequence
that only the most important hidden units, in terms of rep-
resenting input data, can be activated. This would make the
model capable to obtain genuinely sparse representations.

However, it is improper to assume that all input data have
the same threshold of the number of activated hidden units,
in many real world applications. Naturally, data (for exam-
ple, images, in our experiments) in different catalogs should
activate different numbers of hidden units. Consider that if
we use a high threshold to model data which actually ac-
tivate a few hidden units, it would bring some redundancy.
And if we use a low threshold to model data which actually
activate plenty of hidden units, it would lead to some infor-
mation loss. Therefore, it is necessary that adapt the thresh-
olds to the input data.

In this paper, we propose a principled method, which re-
places the universal threshold in CaRBM by thresholds sam-
pled from a certain distribution. Our model is capable of
handling the input data more flexibly. For example, in our
experiments, the threshold of the number of activated hid-
den units should be higher when the input image is rela-
tively more complex. We also analyze how parameters in our
model influence the performance. Here we name the model
Gaussian Cardinality RBM (GC-RBM) since we use Gaus-
sian distribution in our experiments. The reasons for why
we choose Gaussian distribution are elaborated. Experimen-
tal results show the advantage of GC-RBM in classification
tasks compared with CaRBM and the improvement is ex-
tremely statistically significant.

Background

Restricted Boltzmann Machines

Restricted Boltzmann Machine is a particular type of
energy-based model with hidden variables (Bengio 2009) .
It could be represented by an undirected bipartite graph. The
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joint probability of visible units v and hidden units h is given
by:

P (v,h) =
1

Z
exp(v�Wh+ vb+ h�c), (1)

where Z is the partition function, and the model parame-
ters W ∈ R

Nv×Nh represents visible-to-hidden interaction
term, b ∈ R

Nv , c ∈ R
Nh represents the visible and hid-

den biases respectively, and Nv, Nh represents the number
of visible units and hidden units respectively.

The analytical solutions of the joint probability are diffi-
cult to be obtained due to intractability of the partition func-
tion. However, P (hi | v) are conditionally independent to
each other (so as P (vi | h)), which make that both P (h | v)
and P (v | h) are tractable. Therefore the conditional distri-
bution can be easily obtained from Eq.2:

P (hi = 1 | v) = eci+Wiv

1 + eci+Wiv
= sigm(ci +Wiv), (2)

With the conditional probability, Monte Carlo Markov
Chain (MCMC [15]) sampling can be applied in order to
obtain a stochastic estimator of the log-likelihood gradient
of P (v).

Gibbs sampling could give an unbiased stochastic esti-
mator of the log-likelihood gradient. However, it takes too
much time to converge. As an approximation method, Con-
trastive Divergence (CD) (Hinton 2002) could give an ap-
proximate result faster.

Cardinality Restricted Boltzmann Machines

CaRBM introduces the sparsity directly on the joint distribu-
tion of visible variables and hidden variables, which is given
by the equation:

P (v,h) =
1

Z
exp(v�Wh+ vb+ h�c) · ψk

⎛
⎝

Nh∑
j=1

hj

⎞
⎠ ,

(3)
where ψk (c) is assigned to value 1 only when c � k, and
0 others. And ψk is a cardinality potential ( or count poten-
tial) (Gupta, Diwan, and Sarawagi 2007; Tarlow, Givoni,
and Zemel 2010) which is related to the number of activated
hidden units only. It also can be seen as making hidden units
compete with each other since there are no more that k hid-
den units can be activated simultaneously.

As we know, hidden units are conditionally independent
to each other in standard RBM when given the visible units.
However, the hidden units in CaRBM have correlation with
each other when cardinality potential is considered. So the
conditional distribution P (h | v) is no longer factorized.
But it would be easier if we convert it to be chain-structured:

P (h, z | v) = 1

Z

Nh∏
j=1

p(hj | v)
Nh∏
j=2

γ(hj , zj , zj−1) · ψ(zN )

(4)
In this view, z is a Nh dimensional vector, where zj can be
seen as auxiliary variables deterministically related to the h
variables by setting zj =

∑j
i=1 hi and represents the cumu-

lative sum of the first j hidden units. γ(hj , zj , zj−1) is a de-
terministic “addition potential”, which assigns the value one

(a) (b)

Figure 1: The number of activated hidden units of CaRBM
(a), and naive GC-RBM (b) on MNIST

to any triplet (h, z, z′) satisfying z = h + z′. According to
Eq.4, with the chain-structured form, performing exact infer-
ence using the sum-product algorithm (Tarlow et al. 2012)
would be convenient. The basic idea has been presented in
(Gail, Lubin, and Rubinstein 1981)

Gaussian Cardinality Restricted Boltzmann

Machines

While CaRBM shows its advantage in several experimental
results, its assumption that there are no more than k hidden
units could be activated simultaneously is too strict for many
real world applications. So it should be more reasonable to
find a certain kind of distribution to model the thresholds of
the number of activated hidden units for different kinds of
data, rather than to use a universal threshold.

In this paper, we propose a model which is capable of
learning the thresholds by combining the user specified
prior knowledge and the posterior knowledge after examin-
ing data. The learning algorithm framework shows the user
specified term, which is the probability distribution function
(pdf) of a certain distribution, can be replaced by the pdf of
another distribution.

In this work, we choose Gaussian distribution as the user
specified prior knowledge with the following reasons: (1)
The statistics of our experiments on standard RBM suggest
that the number of activated hidden units approximately fol-
lows Gaussian distribution. Our experimental results also
show that the model using Gaussian distribution works well.
(2) We also know that the number of activated hidden units
obeys binomial distribution if all conditional probabilities
P (hi = 1 | v) are the same. Although they are not totally
the same, we still can consider the number of activated hid-
den units obeys a binomial-like distribution. However, bino-
mial distribution is not able to model the variance of data,
since there is only one parameter in binomial distribution
after the number of hidden units is decided. (3) The num-
ber of parameters in the binomial-like distribution, which is
consistent with Nh, is too many and difficult to handle with.
Therefore, we need a simplified form to specify the number
of activated hidden units. (4) According to the central limit
theorem, the binomial distribution could be approximated
by Gaussian when Nh is large enough and P (hi = 1 | v) is
small enough.

Since we use Gaussian distribution as user specified prior
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Figure 2: The comparison of CaRBM, naive GC-RBM and GC-RBM

to model the threshold of the number of activated hidden
units, we call this model GC-RBM. The cardinality potential
in GC-RBM is called Gaussian cardinality potential, which
is quite similar with the cardinality potential of CaRBM. The
joint probability of GC-RBM is given by:

P (v,h | kN (μ,σ2)) =

1

Z
exp(v�Wh+ vb+ h�c) · ψkN(μ,σ2)

⎛
⎝

Nh∑
j=1

hj

⎞
⎠

(5)

Given an input image v, kN (μ,σ2) is a sample drawn from a
given Gaussian distribution N (μ, σ2) where μ is mean and σ
is standard deviation. We also set a lower bound (e.g. 10) in
order to filter all the negative values when sample kN (μ,σ2).
In practise, μ is usually not so small, resulting in that there
is little chance to sample negative values. We would refer
to it as naive GC-RBM the model defined by Eq.5 in order
to distinguish it with GC-RBM which we elaborate soon.
Note that, naive GC-RBM could also be seen as training a
CaRBM for each input image, of course, each model have
different cardinality potential, but all the models share their
weights. The work (Hinton and Salakhutdinov 2009) also
takes this view to help understand their model.

Figure 1 demonstrates the number of activated hidden
units of both CaRBM and naive GC-RBM, where the k in
CaRBM is 20 and the μ in naive GC-RBM is also 20. What
we want is that the threshold of hidden unit activations vary-
ing with the actual data. In the case of Figure 1, the im-
age which are relatively more complicated can be modeled
with the threshold greater than 20. In this way, all the data
should be modeled more precisely. However, we are not able
to know the true threshold of a given image and the approach
to obtain thresholds in naive GC-RBM absolutely relies on
prior knowledge of humans, which means it ignores the in-
put data. So we propose GC-RBM which is capable of adapt-
ing the thresholds of the number of activated hidden units to
the input data, given by Eq.6:

P (v,h | kv) = 1

Z
exp(v�Wh+ vb+ h�c) · ψkv

(
Nh∑
j=1

hj

)
,

(6)
where kv is the threshold of the number of activated hidden
units. Given input data v. kv could be sampled from:

P (kv | θ,v) = P (θ,v | kv)P (kv)

P (θ,v)
. (7)

where θ represents the parameters specified by users.

P (kv | μ, σ2,v)

=
P (θ | kv)P (v | kv)P (kv)

P (θ)P (v)

=
P (θ | kv)P (kv)

P (θ)
· P (v | kv)P (kv)

P (v)
· 1

P (kv)

= P (kv | θ) · P (kv | v) · 1

P (kv)

(8)

From Eq.8, P (kv | θ,v) can be obtained by three parts:
(1) P (k | θ), representing the user specified prior knowledge
on the thresholds of the number of activated hidden units, is
replaced by μ and σ2 in GC-RBM. (2) P (kv | v), represent-
ing the posterior knowledge on k after examining the data, is
the conditional probability given data v. Related inference is
similar to that in CaRBM. But the time complexity of com-
puting exact values of P (kv | v) would not be tolerated
since we need to compute that for every input data. So here
we assume the P (kv | v) ∼ N (

∑Nh

i P (hi = 1 | v), σ2).
The reason for this assumption is explained earlier in this pa-
per. Based on this assumption, we can sample P (kv | θ,v)
by MCMC. (3) P (kv), is the prior of kv, of which the
ground truth we can not obtained. Here we assume P (kv)
follows uniform distribution, empirically. Algorithm1 is the
learning algorithm of GC-RBM. Details of updating W,b,c
can be referred to the work (Swersky et al. 2012).

Eq.8 indicates that with high probability, we sample
thresholds of which values are between two means of two
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Figure 3: (a),(b),(c)Visualization of the weights of 100 hidden units in CaRBM, naive GC-RBM and GC-RBM models on
MNIST. (d) The histogram of the number of activated hidden units in GC-RBM on MNIST.

Gaussian distributions, and the chance to sample values
far from two means is low, as well. It means that we
learn thresholds of which the probabilities are regarded as
weights. Probabilities between two means were initialized
with relatively higher values. Then the high values zone keep
approaching the position where the mean of given Gaussian
distribution as the consequences of increasing of nk.

Algorithm 1 Learning Algorithm of GC-RBM on Pretrain-
ing Phase
Input:

(1) Training data, D.
(2) Parameters of Gaussian prior, μ, σ2.
(3) Number of iterations for updating kv, nk.
(4) Number of iterations for updating W,b, c, np.

Output:
The parameters of GC-RBM, W,b, c.

1: for each training image v in D do
2: Sample kv ∼ N (μ, σ2);
3: for i ← 1 to nk do
4: Randomly initialize W,b, c;
5: for j ← 1 to np do
6: Updating W,b, c with kv as CaRBM;
7: end for
8: if i < nk then
9: Calculate the value of P (kv | μ, σ2,v);

10: Sample kv from P (kv | μ, σ2,v);
11: end if
12: end for
13: end for

Figure 2 shows the comparison of three models, which
could help understand the differences among the three mod-
els. In a word, (1) CaRBM sets a uniform threshold of hid-
den unit activations for all input images; (2) Naive GC-RBM
sets thresholds sampled from a given Gaussian distribution
for different input data; (3) GC-RBM takes the feedback of
hidden units. Actually, naive GC-RBM is not that different
from CaRBM, since the sparse conditions in both two mod-
els are independent of input data. On the contrast, the thresh-
olds of the number of activated hidden units in GC-RBM are
able to adapt to input data.

Parameter Settings

There are three more parameters (μ, σ, and nk) than ones in
CaRBM. The np is assigned the same value as the number of
training iterations in CaRBM. The most appropriate values
of μ and σ depend on the data set. The influence of μ and σ
will be demonstrated in the experiment section.

nk is used to scale the outer loop. It indicates the degree
of similarity between the given Gaussian distribution and the
distribution of thresholds of the number of activated hidden
units after learning, or an importance weight of user speci-
fied prior knowledge. The greater nk is, the distribution after
learning will be more like the given Gaussian distribution,
which means the given Gaussian distribution plays a more
important role in GC-RBM. In practice, large value of nk

is not necessary, which is 2 in our experiment. Settings of
other parameters that are mentioned in our algorithm can be
referred to the work (Swersky et al. 2012).

Complexity

We analyze the time complexity of Algorithm1 in this sec-
tion. Obviously, for each input image v, sampling kv costs
O(1). Calculating kv from P (kv | μ, σ2,v) costs O(Nh),
since we need obtain the value of

∑Nh

i P (hi = 1 | v). Sam-
pling kv costs O(1) as well. It seems that the extra time cost
by learning algorithm of GC-RBM is just O(nk · Nh) and
nk − 1 times for updating W,b, c. However, sampling kv
using MCMC procedure costs quite a lot of time. So in prac-
tice, we assign a relatively smaller value to np when i = nk

and a larger value when i < nk.

Experiment

The goals of our experiment are as follows: (1) Show the
performance of GC-RBM and compare it with other two
models of which the thresholds independent of the data. (2)
Analyze parameters in GC-RBM which influence the per-
formance of GC-RBM on classification tasks.

Datasets

The experiments were conducted on MNIST and CIFAR-
10 (Krizhevsky and Hinton 2009). MNIST has been a
benchmark data set for image classification task that con-
tains 70000 28*28 grayscale images of handwritten dig-
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Figure 4: (a),(b),(c)Visualization of the weights of 100 hidden units in CaRBM, naive GC-RBM and GC-RBM on CIFAR-10.
(d),(e),(f) The histogram of the number of activated hidden units in CaRBM, naive GC-RBM and GC-RBM on CIFAR-10.

its. 60000 images for training and 10000 images for test.
Dataset CIFAR-10 consists of 60000 32*32 color images
in 10 classes, with 6000 images per class. There are 50000
training images and 10000 test images. Compared with im-
ages in CIFAR-10, those in MNIST are relatively simpler to
be recognized.

Classification on MNIST

We applied the CaRBM, naive GC-RBM and GC-RBM to
train a three layers (784-100-10) feed-forward neural net-
work (the first layer is one of models mentioned above, the
second layer is a softmax classifier) on MNIST. Similar to
RBM, we pre-train the network in an unsupervised fash-
ion and then fine-tune it in a supervised way. In pre-training
phase, the settings of parameters which we do not mention
in this paper followed the work (Swersky et al. 2012). The
μ and σ in GC-RBM and naive GC-RBM were assigned to
μ ∈ {10, 20, ..., 100}, σ2 ∈ {9, 25, 100}. In order to have
comparisons among three models, the k in CaRBM was as-
signed to the same values as the μ in our Gaussian thresholds
models. The settings of parameters on fine-tuning phase also
followed the work (Swersky et al. 2012).

Another problem is how to decide thresholds for test data.
In the case of naive GC-RBM, we sampled thresholds for
test data from the Gaussian distribution of which parame-
ters are the same as those on pre-training phase. In the case
of GC-RBM, we also used the Algorithm1, except that we
only update thresholds once, since the network has finished
learning.

Figure 3(a), 3(b), 3(c) show the weights learnt by three

models. Figure 3(d) is the thresholds of the number of acti-
vated hidden units in GC-RBM where the mean is 20. We
used Gaussian distribution to fit both thresholds before and
after learning. We find that fitted parameters before learning
are (μ = 19.4986, σ = 3.0154) and those after learning are
(μ = 20.0686, σ = 2.6176)1.

Parts of experimental results are showed in Figure 5.
Other results are omitted since there is significant increase
of classification error with k, μ from 50 to 90. This issue
occurred in our experiments on CIFAR-10 as well. Each re-
sult is the average of the results of 10 runs with the same
parameter settings. From Figure 5 we can see that: (1) GC-
RBM shows better performance than other models and ob-
tains the lowest error with μ = 20 and σ = 5. We calculated
the P value with the parameters k = μ = 20, σ = 5 on
MNIST, and the P value is less than 0.0001, which means
the difference is extremely statistically significant. (2) The
classification error of CaRBM where k = 10 is the high-
est. The results might be due to the strict constraint of
CaRBM while other models have chance to sample thresh-
olds larger than 10, with which the model is more powerful
in terms of representing data. (3) The performance of GC-
RBM where k, μ = 40 is poorer than CaRBM. The reason
for this might be that GC-RBM modeled more redundancy
where k, μ = 40 (4) The results also suggest that the vari-
ance should be assigned to a relatively smaller value, since
both naive GC-RBM and GC-RBM demonstrate poor per-
formance where σ = 10.

1The thresholds after learning do not obey Gaussian distribu-
tion, here we just use the numbers to represent the difference.
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Figure 5: Classification performance on MNIST

Classification on CIFAR-10

Since CIFAR-10 is a color image data set, we whitened all
the images and trained the three models. Except the differ-
ence in the amount of visible units on two data sets, other
parameter settings are the same as those on MNIST. Fig-
ure 4(a), 4(b), 4(c) show the weights learnt by three models
on CIFAR-10. Figure 4(d), 4(e), 4(f) show the number of
activated hidden units of three models.

Figure 6 shows the performance of three models on
CIFAR-10. What we can read from the figure is as fol-
lows: (1) GC-RBM obtains the lowest classification errors
with μ = 40 and σ = 3. The P value with parameters
k = μ = 40, σ = 3 on CIFAR-10 is also less than 0.0001.
The reason for the larger values of k and μ where the low-
est classification error is obtained, compared with which on
MNIST, might be that images in CIFAR-10 are more com-
plex than those in MNIST. (2) We also find that the classifi-
cation error of CaRBM is the highest where k, μ = 10. The
reason might be the same as that on MNIST.

Comparing GC-RBM with CaRBM

Compared with the performance of naive GC-RBM on
MNIST and CIFAR-10 dataset, the strict sparsity constraint
is a advantage of CaRBM. However, it becomes a disadvan-
tage when compared with GC-RBM.

From the experiment results, we found that it is important
to adapt thresholds to input data, which GC-RBM is capable
of. What is more important is that our learning framework
can replace the Gaussian distribution by another distribution
as user specified prior knowledge. Utilizing Gaussian distri-
bution is easy to implement since there are only two more
parameters than CaRBM and it works well in our experi-
ments.

In our experiments, GC-RBM is able to obtain the lower
classification error than CaRBM, while the opposite results
might be found if the parameter settings are far from the
optimum, such as the results with k, μ = 40 on MNIST.

Figure 6: Classification performance on CIFAR-10

Conclusion

We proposed a new model on the basis of CaRBM by re-
placing the universal threshold of hidden unit activations for
all input data with thresholds for different input data. We
proposed a principled algorithm to learn the thresholds by
given Gaussian distribution and training data, and showed
how other distribution can be used instead in our algorithm
frameworks. We obtained better experimental results com-
pared to CaRBM on MNIST and CIFAR-10. We also ana-
lyzed how the parameters in GC-RBM influence the perfor-
mance on classification task.
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